Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 979
Filtrar
1.
Muscle Nerve ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593477

RESUMO

INTRODUCTION/AIMS: Biomarkers have shown promise in amyotrophic lateral sclerosis (ALS) research, but the quest for reliable biomarkers remains active. This study evaluates the effect of debamestrocel on cerebrospinal fluid (CSF) biomarkers, an exploratory endpoint. METHODS: A total of 196 participants randomly received debamestrocel or placebo. Seven CSF samples were to be collected from all participants. Forty-five biomarkers were analyzed in the overall study and by two subgroups characterized by the ALS Functional Rating Scale-Revised (ALSFRS-R). A prespecified model was employed to predict clinical outcomes leveraging biomarkers and disease characteristics. Causal inference was used to analyze relationships between neurofilament light chain (NfL) and ALSFRS-R. RESULTS: We observed significant changes with debamestrocel in 64% of the biomarkers studied, spanning pathways implicated in ALS pathology (63% neuroinflammation, 50% neurodegeneration, and 89% neuroprotection). Biomarker changes with debamestrocel show biological activity in trial participants, including those with advanced ALS. CSF biomarkers were predictive of clinical outcomes in debamestrocel-treated participants (baseline NfL, baseline latency-associated peptide/transforming growth factor beta1 [LAP/TGFß1], change galectin-1, all p < .01), with baseline NfL and LAP/TGFß1 remaining (p < .05) when disease characteristics (p < .005) were incorporated. Change from baseline to the last measurement showed debamestrocel-driven reductions in NfL were associated with less decline in ALSFRS-R. Debamestrocel significantly reduced NfL from baseline compared with placebo (11% vs. 1.6%, p = .037). DISCUSSION: Following debamestrocel treatment, many biomarkers showed increases (anti-inflammatory/neuroprotective) or decreases (inflammatory/neurodegenerative) suggesting a possible treatment effect. Neuroinflammatory and neuroprotective biomarkers were predictive of clinical response, suggesting a potential multimodal mechanism of action. These results offer preliminary insights that need to be confirmed.

2.
Mol Ther ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38627969

RESUMO

Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and NK cells have shown remarkable clinical efficacy in treating hematological malignancies, however current methods mainly utilize viral vectors which are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. Our proof of principle TcB-M engineering of CAR-NK and CAR-T cells show low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improves survival in a Burkitt lymphoma xenograft model in vivo. Overall, TcB-M is a versatile, safe, efficient and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition.

3.
Cytotherapy ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38625068

RESUMO

Neutrophils are the most frequent immune cell type in peripheral blood, performing an essential role against pathogens. People with neutrophil deficiencies are susceptible to deadly infections, highlighting the importance of generating these cells in host immunity. Neutrophils can be generated from hematopoietic progenitor cells (HPCs) and embryonic stem cells (ESCs) using a cocktail of cytokines. In addition, induced pluripotent stem cells (iPSCs) can be differentiated into various functional cell types, including neutrophils. iPSCs can be derived from differentiated cells, such as skin and blood cells, by reprogramming them to a pluripotent state. Neutrophil generation from iPSCs involves a multistep process that can be performed through feeder cell-dependent and feeder cell-independent manners. Various cytokines and growth factors, in particular, stem cell facto, IL-3, thrombopoietin and granulocyte colony-stimulating factor (G-CSF), are used in both methods, especially, G-CSF which induces the final differentiation of neutrophils in the granulocyte lineage. iPSC-derived neutrophils have been used as a valuable tool for studying rare genetic disorders affecting neutrophils. The iPSC-derived neutrophils can also be used for disease modeling, infection research and drug discovery. However, several challenges must be overcome before iPSC-derived neutrophils can be used therapeutically in transplantation medicine. This review provides an overview of the commonly employed protocols for generating neutrophils from HPCs, ESCs and iPSCs and discusses the potential applications of the generated cells in research and medicine.

4.
Front Immunol ; 15: 1360237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576617

RESUMO

Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αßT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos T , Imunoterapia , Imunoterapia Adotiva , Engenharia Celular , Neoplasias/terapia
5.
Cell Syst ; 15(4): 322-338.e5, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636457

RESUMO

Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here, we integrated CODEX multiplexed tissue imaging with multiscale modeling software to model key action points that influence the outcome of T cell therapies with cancer. The initial phenotype of therapeutic T cells influences the ability of T cells to convert tumor cells to an inflammatory, anti-proliferative phenotype. This T cell phenotype could be preserved by structural reprogramming to facilitate continual tumor phenotype conversion and killing. One takeaway is that controlling the rate of cancer phenotype conversion is critical for control of tumor growth. The results suggest new design criteria and patient selection metrics for T cell therapies, call for a rethinking of T cell therapeutic implementation, and provide a foundation for synergistically integrating multiplexed imaging data with multiscale modeling of the cancer-immune interface. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/patologia , Linfócitos T , Fenótipo
6.
Front Immunol ; 15: 1328858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558819

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many hematologic malignancies as well as non-malignant conditions. Part of the curative basis underlying HSCT for hematologic malignancies relies upon induction of the graft versus leukemia (GVL) effect in which donor immune cells recognize and eliminate residual malignant cells within the recipient, thereby maintaining remission. GVL is a clinically evident phenomenon; however, specific cell types responsible for inducing this effect and molecular mechanisms involved remain largely undefined. One of the best examples of GVL is observed after donor lymphocyte infusions (DLI), an established therapy for relapsed disease or incipient/anticipated relapse. DLI involves infusion of peripheral blood lymphocytes from the original HSCT donor into the recipient. Sustained remission can be observed in 20-80% of patients treated with DLI depending upon the underlying disease and the intrinsic burden of targeted cells. In this review, we will discuss current knowledge about mechanisms of GVL after DLI, experimental strategies for augmenting GVL by manipulation of DLI (e.g. neoantigen vaccination, specific cell type selection/depletion) and research outlook for improving DLI and cellular immunotherapies for hematologic malignancies through better molecular definition of the GVL effect.


Assuntos
Doença Enxerto-Hospedeiro , Neoplasias Hematológicas , Leucemia , Humanos , Transplante Homólogo , Transfusão de Linfócitos , Neoplasias Hematológicas/terapia , Linfócitos/patologia , Leucemia/terapia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38582666

RESUMO

BACKGROUND: The application of CD19-directed chimeric antigen receptor T (CAR T) cell therapy has improved outcomes for thousands of patients with non-Hodgkin B cell lymphoma (NHL). The toxicities associated with various CAR T cell products, however, can be severe and difficult to anticipate. METHODS: In this systematic review and meta-analysis, we set out to determine whether there are measurable differences in common toxicities, including cytokine release syndrome (CRS), immune effector cell associated neurotoxicity syndrome (ICANS), cytopenias, and infections, between CAR T products that are commercially available for the treatment of NHL. RESULTS: After a stringent study selection process, we used a cohort of 1364 patients enrolled in 15 prospective clinical trials investigating the use of axicabtagene ciloleucel (axi-cel), lisocabtagene maraleucel (liso-cel), and tisagenlecleucel (tisa-cel). We found that the rates of CRS and ICANS were significantly higher with axi-cel as compared to both liso-cel and tisa-cel. Conversely, we demonstrated that rates of all-grade and severe neutropenia were significantly greater with liso-cel. Febrile neutropenia and all-grade infection rates did not differ significantly between products though rates of severe infection were increased with axi-cel. CONCLUSIONS: Overall, this study serves as the first to delineate toxicity profiles associated with various available CAR T products. By better understanding associated toxicities, it may become possible to tailor therapies towards individual patients and anticipate the development of toxicities at earlier stages.

8.
PDA J Pharm Sci Technol ; 78(2): 206-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38609149

RESUMO

The Cell Banks, Advanced Technologies (ATMPs, NGS) session at the 2023 Viral Clearance Symposium (VCS) focused on the assurance of high virus safety profiles of advanced technology medicinal products (ATMPs) by implementation of advanced virus detection methods using rapid and sensitive technologies, such as next-generation sequencing (NGS). All presentations in this session made the need to replace in vivo testing for viruses by new technologies that have been demonstrated to be incomparably broad in their detection capabilities and can even detect unknown viruses. An evaluation of historical data collected by the Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) from their members' in vivo and in vitro adventitious virus test experience as well as on using NGS was presented. The data convincingly supported the necessity to replace in vivo testing with faster, broader, more sensitive, more accurate, and more specific virus detection methods. Additionally, a collaborative study-initiated by the CAACB-with the goal to revisit traditional adventitious agent testing by using targeted NGS to replace in vivo and in vitro tests for well-known and broadly used Chinese hamster ovary (CHO) cells was presented, including the planned risk-assessment approach using prior knowledge and historical data. Overall, this session demonstrated that the use of new virus detection methods, such as NGS, represents a great opportunity to provide sufficient viral safety margins, specifically, for ATMPs, where downstream virus clearance is not possible. This path forward is also supported by the final ICH Q5A(R2) guideline.


Assuntos
Contaminação de Medicamentos , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Cricetinae , Células CHO , Cricetulus , Contaminação de Medicamentos/prevenção & controle , Tecnologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-38606986

RESUMO

Condylar resorption is an aggressive and disability form of temporomandibular joint (TMJ) degenerative disease, usually non-respondent to conservative or minimally invasive therapies and often leading to surgical intervention and prostheses implantation. This condition is also one of the most dreaded postoperative complications of orthognathic surgery, with severe cartilage erosion and loss of subchondral bone volume and mineral density, associated with a painful or not inflammatory processes. Because regenerative medicine has emerged as an alternative for orthopedic cases with advanced degenerative joint disease, we conducted a phase I/IIa clinical trial (U1111-1194-6997) to evaluate the safety and efficacy of autologous nasal septal chondroprogenitor cells. Ten participants underwent biopsy of the nasal septum cartilage during their orthognathic surgery. The harvested cells were cultured in vitro and analyzed for viability, presence of phenotype markers for mesenchymal stem and/or chondroprogenitor cells, and the potential to differentiate into chondrocytes, adipocytes, and osteoblasts. After the intra-articular injection of the cell therapy, clinical follow-up was performed using the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) and computed tomography (CT) images. No serious adverse events related to the cell therapy injection were observed during the 12-month follow-up period. It was found that autologous chondroprogenitors reduced arthralgia, promoted stabilization of mandibular function and condylar volume, and regeneration of condylar tissues. This study demonstrates that chondroprogenitor cells from the nasal septum may be a promise strategy for the treatment of temporomandibular degenerative joint disease that do not respond to other conservative therapies.

10.
World J Gastroenterol ; 30(13): 1791-1800, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659486

RESUMO

Liver transplantation (LT) has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management. However, long-term side-effects of immunosuppressants, like infection, metabolic disorders and malignant tumor are gaining more attention. Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants, but the liver function and intrahepatic histology maintain normal. The approaches to achieve immune tolerance after transplantation include spontaneous, operational and induced tolerance. The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up. No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation. With the understanding to the underlying mechanisms of immune tolerance, many strategies have been developed to induce tolerance in LT recipients. Cellular strategy is one of the most promising methods for immune tolerance induction, including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells. The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials, while obstacles still exist before translating into clinical practice. Here, we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients.


Assuntos
Imunossupressores , Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Imunossupressores/uso terapêutico , Imunossupressores/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Tolerância Imunológica/imunologia , Doença Hepática Terminal/cirurgia , Doença Hepática Terminal/imunologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Tolerância ao Transplante/imunologia , Transferência Adotiva/métodos , Sobrevivência de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Animais , Resultado do Tratamento , Linfócitos T Reguladores/imunologia , Fígado/imunologia , Fígado/patologia , Fígado/cirurgia
11.
Cytotherapy ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38661611

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T-cell products are commonly generated using lentiviral vector (LV) transduction. Optimal final formulation buffer (FFB) supporting LV stability during cryostorage is crucial for cost-effective manufacturing. METHODS: To identify the ideal LV FFB composition for ex vivo CAR-T production, primary human T cells were transduced with vesicular stomatitis virus G-protein (VSV-G) -pseudotyped LVs (encoding a reporter gene or an anti-CD19-CAR). The formulations included phosphate-buffered saline (PBS), HEPES, or X-VIVOTM 15, and stabilizing excipients. The functional and viral particle titers and vector copy number were measured after LV cryopreservation and up to 24 h post-thaw incubation. CAR-Ts were produced with LVs in selected FFBs, and the resulting cells were characterized. RESULTS: Post-cryopreservation, HEPES-based FFBs provided higher LV functional titers than PBS and X-VIVOTM 15, and 10% trehalose-20 mM MgCl2 improved LV transduction efficiency in PBS and 50 mM HEPES. Thawed vectors remained stable at +4°C, while a ≤ 25% median decrease in the functional titer occurred during 24 h at room temperature. Tested excipients did not enhance LV post-thaw stability. CAR-Ts produced using LVs cryopreserved in 10% trehalose- or sucrose-20 mM MgCl2 in 50 mM HEPES showed comparable transduction rates, cell yield, viability, phenotype, and in vitro functionality. CONCLUSION: A buffer consisting of 10% trehalose-20 mM MgCl2 in 50 mM HEPES provided a feasible FFB to cryopreserve a VSV-G -pseudotyped LV for CAR-T-cell production. The LVs remained relatively stable for at least 24 h post-thaw, even at ambient temperatures. This study provides insights into process development, showing LV formulation data generated using the relevant target cell type for CAR-T-cell manufacturing.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38643029

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy has significantly impacted treatment algorithms and clinical outcomes for a variety of patients with hematologic malignancies over the past decade. The field of cellular immunotherapy is currently experiencing a rapid expansion of the number of patients eligible for CAR-T therapies as approvals are being seen in earlier lines of therapy. With the expanded patients eligible for these therapies, more treatment centers will be necessary to keep up with demand. Building a cellular therapy program can be a daunting task, and therefore, we present our experience with building a clinical cellular therapy program.

13.
J Transl Med ; 22(1): 305, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528553

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammatory reactions and tissue damage in the joints. Long-term drug use in clinical practice is often accompanied by adverse reactions. Extracorporeal photopheresis (ECP) is an immunomodulatory therapy with few side effects, offering a potential and safe therapeutic alternative for RA through the induction of immune tolerance. This study aimed to investigate the therapeutic effects of ECP on RA using a collagen-induced arthritis (CIA) murine model, as well as to explore its immunomodulatory effects in vivo. Additionally, particular attention was given to the significant role of monocytes during the ECP process. METHODS: A murine model of rheumatoid arthritis was established by administering two injections of bovine type II collagen to DBA/1J mice. ECP, ECP-MD (mononuclear cells were depleted during the ECP), MTX, and PBS treatment were applied to the CIA mice. During the treatment process, clinical scores and body weight changes of CIA mice were closely monitored. After six treatment sessions, micro-CT images of the hind paws from live mice were captured. Ankle joints and paws of the mice were collected and processed for histological evaluation. Spleen samples were collected to measure the Th17/Treg cells ratio, and serum samples were collected to assess cytokine and anti-type II collagen IgG levels. Monocytes and dendritic cells populations before and after ECP in vitro were detected by flow cytometry. RESULT: ECP therapy significantly attenuated the progression of CIA, alleviated the severity of clinical symptoms in CIA mice and effectively suppressed synovial hyperplasia, inflammation, and cartilage damage. There was an expansion in the percentage of CD3 + CD4 + CD25 + FoxP3 + Tregs and a decrease in CD3 + CD4 + IL17A + Th17 cells in vivo. Furthermore, ECP reduced the serum levels of pro-inflammatory cytokines IL-6 (53.47 ± 7.074 pg/mL vs 5.142 ± 1.779 pg/mL, P < 0.05) and IL-17A (3.077 ± 0.401 pg/mL vs 0.238 ± 0.082 pg/mlL, P < 0.0001) compared with PBS. Interestingly, the depletion of monocytes during the ECP process did not lead to any improvement in clinical symptoms or histological scores in CIA mice. Moreover, the imbalance in the Th17/Treg cells ratio became even more pronounced, accompanied by an augmented secretion of pro-inflammatory cytokines IL-6 and IL-17A. In vitro, compared with cells without ECP treatment, the proportion of CD11b + cells were significantly reduced (P < 0.01), the proportion of CD11c + cells were significantly elevated (P < 0.001) 24 h after ECP treatment. Additionally, the expression of MHC II (P < 0.0001), CD80 (P < 0.01), and CD86 (P < 0.001) was downregulated in CD11c + cells 24 h after ECP treatment. CONCLUSION: Our study demonstrates that ECP exhibits a therapeutic effect comparable to conventional therapy in CIA mice, and the protective mechanisms of ECP against RA involve Th17/Treg cells ratio, which result in decreased IL-6 and IL-17A. Notably, monocytes derived from CIA mice are an indispensable part to the efficacy of ECP treatment, and the proportion of monocytes decreased and the proportion of tolerogenic dendritic cells increased after ECP treatment in vitro.


Assuntos
Artrite Experimental , Artrite Reumatoide , Fotoferese , Camundongos , Animais , Bovinos , Interleucina-17/metabolismo , Modelos Animais de Doenças , Interleucina-6 , Camundongos Endogâmicos DBA , Artrite Reumatoide/tratamento farmacológico , Inflamação , Citocinas/metabolismo , Artrite Experimental/terapia , Colágeno Tipo II , Linfócitos T Reguladores , Células Th17
14.
Biomolecules ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38540725

RESUMO

The majority of approved therapies for many diseases are developed to target their underlying pathophysiology. Understanding disease pathophysiology has thus proven vital to the successful development of clinically useful medications. Stroke is generally accepted as the leading cause of adult disability globally and ischemic stroke accounts for the most common form of the two main stroke types. Despite its health and socioeconomic burden, there is still minimal availability of effective pharmacological therapies for its treatment. In this review, we take an in-depth look at the etiology and pathophysiology of ischemic stroke, including molecular and cellular changes. This is followed by a highlight of drugs, cellular therapies, and complementary medicines that are approved or undergoing clinical trials for the treatment and management of ischemic stroke. We also identify unexplored potential targets in stroke pathogenesis that can be exploited to increase the pool of effective anti-stroke and neuroprotective agents through de novo drug development and drug repurposing.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos
15.
Transpl Infect Dis ; 26(2): e14268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38477039

RESUMO

BACKGROUND: Prolonged periods of immunosuppression during hematopoietic stem cell transplant (HSCT) can result in serious infectious complications and contribute to transplant-related morbidity and mortality. Adherence to standardized pre and postinfection screening guidelines, prescribed medications, and early identification of infectious symptoms through comprehensive patient and family education are crucial to minimizing infectious complications. Advanced practice nurses (APNs) are key members of the multidisciplinary care team in the HSCT specialty, maintaining a specialized skillset and scope of practice which includes a holistic based, preventative medicine and risk mitigation approach. METHODS: This review sought to describe the role of the APN in HSCT care and to further examine existing APN led models of care which focus on infection prevention and education throughout the HSCT treatment journey. RESULTS: No studies specifically examined the APN role in infectious diseases risk assessment, screening, and management throughout the HSCT journey were identified throughout our review, however, there was considerable evidence to demonstrate the benefits of APN led care in the oncology and solid organ transplantation specialty which led to improvements in continuity of care, overall patient outcomes, and multidisciplinary team collaboration. The key themes identified in our review, were the role of the APN in the delivery of comprehensive patient and family education, the role of the APN in supporting, mentoring, and educating junior medical and nursing teams, the collaboration between the APN and the multidisciplinary care team, and the role of the APN in prompt recognition, triage, and management of treatment related complications, such as infection.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Papel do Profissional de Enfermagem , Humanos , Terapia de Imunossupressão , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
16.
Stem Cells Dev ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38445374

RESUMO

Cellular therapies provide promising options for inducing tolerance in transplantation of solid organs, bone marrow, and vascularized composite allografts. However, novel tolerance-inducing protocols remain limited, despite extensive research. We previously introduced and characterized a human multi-chimeric cell (HMCC) line, created through ex vivo fusion of human umbilical cord blood (UCB) cells derived from three unrelated donors. In this study, we assessed in vivo biodistribution and safety of HMCCs in the NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ NOD scid gamma (NSG) mouse model. Twenty-four NSG mice were randomly assigned to four groups (n = 6/group) and received intraosseous (IO.) or intravenous (IV.) injections of 0.6 × 106 donor UCB cells or fused HMCC: Group 1-UCB (IO.), Group 2-UCB (IV.), Group 3-HMCC (IO.), and Group 4-HMCC (IV.). Hematopoietic phenotype maintenance and presence of human leukocyte antigens (HLA), class I antigens, in the selected lymphoid and nonlymphoid organs were assessed by flow cytometry. Weekly evaluation and magnetic resonance imaging (MRI) assessed HMCC safety. Comparative analysis of delivery routes revealed significant differences in HLA class I percentages for IO.: 1.83% ± 0.79%, versus IV. delivery: 0.04% ± 0.01%, P < 0.01, and hematopoietic stem cell marker percentages of CD3 (IO.: 1.41% ± 0.04%, vs. IV.: 0.07% ± 0.01%, P < 0.05) and CD4 (IO.: 2.74% ± 0.31%, vs. IV.: 0.59% ± 0.11%, P < 0.01). Biodistribution analysis after IO. delivery confirmed HMCC presence in lymphoid organs and negligible presence in nonlymphoid organs, except for lung (IO.: 0.19% ± 0.06%, vs. IV.: 6.33% ± 0.56%, P < 0.0001). No evidence of tumorigenesis was observed by MRI at 90 days following IO. and IV. administration of HMCC. This study confirmed biodistribution and safety of HMCC therapy in the NSG mouse model, both following IO. and IV. administration. However, IO. delivery route confirmed higher efficacy of engraftment and safety profile, introducing HMCCs as a novel cell-based therapeutic approach with promising clinical applications in solid organ, bone marrow, and vascularized composite allotransplantation transplantation.

17.
J Interferon Cytokine Res ; 44(3): 99-110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488758

RESUMO

Despite the promising results of immunotherapy, further experiments need to be considered because of several factors ranging from physical barriers to off-tumor adverse effects. It is surprising that adoptive cellular immunotherapy, particularly dendritic cell and cytokine-induced killer (DC-CIK) therapy, is far less emphasized in the treatment of cancer diseases. DC-CIK therapy in cancer patients presents auspicious results with low or no side effects, which should not be overlooked. More interestingly, almost all DC-CIK clinical trials are ongoing in China that highlight the limitations of therapeutic strategies and require large-scale research. To date, it is advisable to consider combination therapy with chemotherapy since it has shown promising outcomes with higher efficacy. In this article, the efficacy of DC-CIK therapy in patients with cancer is summarized by underscoring the lack of experiments on soft cancers on an unprecedented scale. In brief, DC-CIK therapy is a safe and effective therapeutic agent for malignant and nonmalignant diseases that enhances short-term and long-term effects.


Assuntos
Células Matadoras Induzidas por Citocinas , Neoplasias , Humanos , Citocinas/uso terapêutico , Neoplasias/terapia , Imunoterapia , Imunoterapia Adotiva/efeitos adversos , Células Dendríticas
18.
Cytotherapy ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38441513

RESUMO

BACKGROUND AIMS: The relationship between blood establishments and advanced cellular therapies is evident in several European countries, with some involved in research and development and/or in manufacturing. The aim of the present study was to understand the advanced therapy medicinal product (ATMP) infrastructural, regulatory and logistic requirements needed for the Irish Blood Transfusion Service to support advanced therapeutics in Ireland. METHODS: An online survey consisting of 13 questions was distributed in a targeted manner to the identified ATMP stakeholders in Ireland, namely those working in industry, health care, regulatory agencies or education. Subject matter experts in the field were approached and interviewed to gain further insight into the relationship between blood and tissue establishments (BTEs) and ATMPs, to explore the advantages these institutions have in development and to highlight potential challenges for implementation. RESULTS: In total, 84.9% of survey respondents stated that BTEs have a role in the development of advanced therapeutics. Key BTE services identified as applicable to the ATMP sector from both surveys and interviews include the provision of starting materials for research and manufacturing, donor management, use of existing quality and traceability frameworks, product logistic strategies and Good Manufacturing Practice. Challenges for BTE expansion into the sector currently include high costs associated with ATMPs, lack of expertise in these therapies, limited therapeutic populations and no national ATMP strategic plan for Ireland. CONCLUSIONS: Blood establishments have services and expertise that can be extended into the advanced therapy sector. The existing knowledge and skill base of BTEs in Ireland should be leveraged to accelerate the development of ATMP strategies for industry and healthcare.

19.
Clin Infect Dis ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427848

RESUMO

BACKGROUND: Hematopoietic cell transplant (HCT) or chimeric antigen receptor T cell (CAR-T) therapy recipients have high morbidity from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are limited data on outcomes from SARS-CoV-2 infection shortly before cellular therapy and uncertainty whether to delay therapy. METHODS: We conducted a retrospective cohort study of patients with SARS-CoV-2 infection within 90 days prior to HCT or CAR-T therapy between January 2020 and November 2022. We characterized the kinetics of SARS-CoV-2 detection, clinical outcomes following cellular therapy, and impact on delays in cellular therapy. RESULTS: We identified 37 patients (n=15 allogeneic HCT, n=11 autologous HCT, n=11 CAR-T therapy) with SARS-CoV-2 infections within 90 days of cellular therapy. Most infections (73%) occurred between March and November 2022, when Omicron strains were prevalent. Most patients had asymptomatic (27%) or mild (68%) coronavirus disease 2019 (COVID-19). SARS-CoV-2 positivity lasted a median of 20.0 days [IQR, 12.5-26.25]. The median time from first positive SARS-CoV-2 test to cellular therapy was 45 days [IQR, 37.75-70]; one patient tested positive on the day of infusion. After cellular therapy, no patients had recrudescent SARS-CoV-2 infection or COVID-19-related complications. Cellular therapy delays related to SARS-CoV-2 infection occurred in 70% of patients for a median of 37 days. Delays were more common after allogeneic (73%) and autologous (91%) HCT compared to CAR-T cell therapy (45%). CONCLUSIONS: Patients with asymptomatic or mild COVID-19 may not require prolonged delays in cellular therapy in the context of contemporary circulating variants and availability of antiviral therapies.

20.
Cell Transplant ; 33: 9636897241231892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433349

RESUMO

Immune cell therapy as a revolutionary treatment modality, significantly transformed cancer care. It is a specialized form of immunotherapy that utilizes living immune cells as therapeutic reagents for the treatment of cancer. Unlike traditional drugs, cell therapies are considered "living drugs," and these products are currently customized and require advanced manufacturing techniques. Although chimeric antigen receptor (CAR)-T cell therapies have received tremendous attention in the industry regarding the treatment of hematologic malignancies, their effectiveness in treating solid tumors is often restricted, leading to the emergence of alternative immune cell therapies. Tumor-infiltrating lymphocytes (TIL) cell therapy, cytokine-induced killer (CIK) cell therapy, dendritic cell (DC) vaccines, and DC/CIK cell therapy are designed to use the body's natural defense mechanisms to target and eliminate cancer cells, and usually have fewer side effects or risks. On the other hand, cell therapies, such as chimeric antigen receptor-T (CAR-T) cell, T cell receptor (TCR)-T, chimeric antigen receptor-natural killer (CAR-NK), or CAR-macrophages (CAR-M) typically utilize either autologous stem cells, allogeneic or xenogeneic cells, or genetically modified cells, which require higher levels of manipulation and are considered high risk. These high-risk cell therapies typically hold special characteristics in tumor targeting and signal transduction, triggering new anti-tumor immune responses. Recently, significant advances have been achieved in both basic and clinical researches on anti-tumor mechanisms, cell therapy product designs, and technological innovations. With swift technological integration and a high innovation landscape, key future development directions have emerged. To meet the demands of cell therapy technological advancements in treating cancer, we comprehensively and systematically investigate the technological innovation and clinical progress of immune cell therapies in this study. Based on the therapeutic mechanisms and methodological features of immune cell therapies, we analyzed the main technical advantages and clinical transformation risks associated with these therapies. We also analyzed and forecasted the application prospects, providing references for relevant enterprises with the necessary information to make informed decisions regarding their R&D direction selection.


Assuntos
Neoplasias Hematológicas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/terapia , Imunoterapia , Terapia Baseada em Transplante de Células e Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...